# Model Usage Guide After training, you can use your model for predictions in several ways. This guide covers loading models and making predictions. ## Loading a Model To load a saved model checkpoint (from a previous fine-tuning run), use the `load_from_checkpoint` method: ```python from mattertune.backbones import JMPBackboneModule model = JMPBackboneModule.load_from_checkpoint("path/to/checkpoint.ckpt") ``` ## Making Predictions The `MatterTunePropertyPredictor` interface provides a simple way to make predictions for a single or batch of atoms: ```python from ase import Atoms import torch # Create ASE Atoms objects atoms1 = Atoms('H2O', positions=[[0, 0, 0], [0, 0, 1], [0, 1, 0]], cell=[10, 10, 10], pbc=True) atoms2 = Atoms('H2O', positions=[[0, 0, 0], [0, 0, 1], [0, 1, 0]], cell=[10, 10, 10], pbc=True) # Get predictions using the model's property predictor interface property_predictor = model.property_predictor() predictions = property_predictor.predict([atoms1, atoms2], ["energy", "forces"]) print("Energy:", predictions[0]["energy"], predictions[1]["energy"]) print("Forces:", predictions[0]["forces"], predictions[1]["forces"]) ``` ## Using as ASE Calculator Our ASE calculator interface allows you to use the model for molecular dynamics or geometry optimization: ```python from ase.optimize import BFGS # Create calculator from model calculator = model.ase_calculator() # Set up atoms and calculator atoms = Atoms('H2O', positions=[[0, 0, 0], [0, 0, 1], [0, 1, 0]], cell=[10, 10, 10], pbc=True) atoms.calc = calculator # Run geometry optimization opt = BFGS(atoms) opt.run(fmax=0.01) # Get optimized results print("Final energy:", atoms.get_potential_energy()) print("Final forces:", atoms.get_forces()) ```