mattertune.finetune.optimizer
Functions
|
Classes
|
|
|
|
|
- class mattertune.finetune.optimizer.AdamConfig(*, name='Adam', lr, eps=1e-08, betas=(0.9, 0.999), weight_decay=0.0, amsgrad=False)[source]
- Parameters:
name (Literal['Adam'])
lr (Annotated[float, Gt(gt=0)])
eps (Annotated[float, Ge(ge=0)])
betas (tuple[Annotated[float, Gt(gt=0)], Annotated[float, Gt(gt=0)]])
weight_decay (Annotated[float, Ge(ge=0)])
amsgrad (bool)
- name: Literal['Adam']
name of the optimizer.
- lr: C.PositiveFloat
Learning rate.
- eps: C.NonNegativeFloat
Epsilon.
- betas: tuple[C.PositiveFloat, C.PositiveFloat]
Betas.
- weight_decay: C.NonNegativeFloat
Weight decay.
- amsgrad: bool
Whether to use AMSGrad variant of Adam.
- class mattertune.finetune.optimizer.AdamWConfig(*, name='AdamW', lr, eps=1e-08, betas=(0.9, 0.999), weight_decay=0.01, amsgrad=False)[source]
- Parameters:
name (Literal['AdamW'])
lr (Annotated[float, Gt(gt=0)])
eps (Annotated[float, Ge(ge=0)])
betas (tuple[Annotated[float, Gt(gt=0)], Annotated[float, Gt(gt=0)]])
weight_decay (Annotated[float, Ge(ge=0)])
amsgrad (bool)
- name: Literal['AdamW']
name of the optimizer.
- lr: C.PositiveFloat
Learning rate.
- eps: C.NonNegativeFloat
Epsilon.
- betas: tuple[C.PositiveFloat, C.PositiveFloat]
Betas.
- weight_decay: C.NonNegativeFloat
Weight decay.
- amsgrad: bool
Whether to use AMSGrad variant of Adam.
- class mattertune.finetune.optimizer.SGDConfig(*, name='SGD', lr, momentum=0.0, weight_decay=0.0, nestrov=False)[source]
- Parameters:
name (Literal['SGD'])
lr (Annotated[float, Gt(gt=0)])
momentum (Annotated[float, Ge(ge=0)])
weight_decay (Annotated[float, Ge(ge=0)])
nestrov (bool)
- name: Literal['SGD']
name of the optimizer.
- lr: C.PositiveFloat
Learning rate.
- momentum: C.NonNegativeFloat
Momentum.
- weight_decay: C.NonNegativeFloat
Weight decay.
- nestrov: bool
Whether to use nestrov.