from __future__ import annotations
import contextlib
import copy
import threading
from collections.abc import Callable, Iterable
from typing import Any, Literal, overload
import lightning.pytorch as pl
import nshconfig as C
import torch
from lightning.pytorch import Callback
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from typing_extensions import final, override
from .base import RecipeConfigBase, recipe_registry
[docs]
@final
@recipe_registry.register
class EMARecipeConfig(RecipeConfigBase):
name: Literal["ema"] = "ema"
decay: C.PositiveFloat
"""The exponential decay used when calculating the moving average. Has to be between 0-1."""
validate_original_weights: bool = False
"""Validate the original weights, as apposed to the EMA weights."""
every_n_steps: int = 1
"""Apply EMA every N steps."""
cpu_offload: bool = False
"""Offload weights to CPU."""
[docs]
@override
def create_lightning_callback(self):
return EMACallback(
decay=self.decay,
validate_original_weights=self.validate_original_weights,
every_n_steps=self.every_n_steps,
cpu_offload=self.cpu_offload,
)
class EMACallback(Callback):
"""
Implements Exponential Moving Averaging (EMA).
When training a model, this callback will maintain moving averages of the trained parameters.
When evaluating, we use the moving averages copy of the trained parameters.
When saving, we save an additional set of parameters with the prefix `ema`.
Args:
decay: The exponential decay used when calculating the moving average. Has to be between 0-1.
validate_original_weights: Validate the original weights, as apposed to the EMA weights.
every_n_steps: Apply EMA every N steps.
cpu_offload: Offload weights to CPU.
"""
@override
def __init__(
self,
decay: float,
validate_original_weights: bool = False,
every_n_steps: int = 1,
cpu_offload: bool = False,
):
if not (0 <= decay <= 1):
raise MisconfigurationException("EMA decay value must be between 0 and 1")
self.decay = decay
self.validate_original_weights = validate_original_weights
self.every_n_steps = every_n_steps
self.cpu_offload = cpu_offload
@override
def on_fit_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
device = pl_module.device if not self.cpu_offload else torch.device("cpu")
trainer.optimizers = [
EMAOptimizer(
optim,
device=device,
decay=self.decay,
every_n_steps=self.every_n_steps,
current_step=trainer.global_step,
)
for optim in trainer.optimizers
if not isinstance(optim, EMAOptimizer)
]
@override
def on_validation_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self._should_validate_ema_weights(trainer):
self.swap_model_weights(trainer)
@override
def on_validation_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self._should_validate_ema_weights(trainer):
self.swap_model_weights(trainer)
@override
def on_test_start(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self._should_validate_ema_weights(trainer):
self.swap_model_weights(trainer)
@override
def on_test_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"
) -> None:
if self._should_validate_ema_weights(trainer):
self.swap_model_weights(trainer)
def _should_validate_ema_weights(self, trainer: "pl.Trainer") -> bool:
return not self.validate_original_weights and self._ema_initialized(trainer)
def _ema_initialized(self, trainer: "pl.Trainer") -> bool:
return any(
isinstance(optimizer, EMAOptimizer) for optimizer in trainer.optimizers
)
def swap_model_weights(self, trainer: "pl.Trainer", saving_ema_model: bool = False):
for optimizer in trainer.optimizers:
assert isinstance(optimizer, EMAOptimizer)
optimizer.switch_main_parameter_weights(saving_ema_model)
@contextlib.contextmanager
def save_ema_model(self, trainer: "pl.Trainer"):
"""
Saves an EMA copy of the model + EMA optimizer states for resume.
"""
self.swap_model_weights(trainer, saving_ema_model=True)
try:
yield
finally:
self.swap_model_weights(trainer, saving_ema_model=False)
@contextlib.contextmanager
def save_original_optimizer_state(self, trainer: "pl.Trainer"):
for optimizer in trainer.optimizers:
assert isinstance(optimizer, EMAOptimizer)
optimizer.save_original_optimizer_state = True
try:
yield
finally:
for optimizer in trainer.optimizers:
assert isinstance(optimizer, EMAOptimizer)
optimizer.save_original_optimizer_state = False
@torch.no_grad()
def ema_update(ema_model_tuple, current_model_tuple, decay):
torch._foreach_mul_(ema_model_tuple, decay)
torch._foreach_add_(
ema_model_tuple,
current_model_tuple,
alpha=(1.0 - decay),
)
def run_ema_update_cpu(
ema_model_tuple, current_model_tuple, decay, pre_sync_stream=None
):
if pre_sync_stream is not None:
pre_sync_stream.synchronize()
ema_update(ema_model_tuple, current_model_tuple, decay)
class EMAOptimizer(torch.optim.Optimizer):
r"""
EMAOptimizer is a wrapper for torch.optim.Optimizer that computes
Exponential Moving Average of parameters registered in the optimizer.
EMA parameters are automatically updated after every step of the optimizer
with the following formula:
ema_weight = decay * ema_weight + (1 - decay) * training_weight
To access EMA parameters, use ``swap_ema_weights()`` context manager to
perform a temporary in-place swap of regular parameters with EMA
parameters.
Notes:
- EMAOptimizer is not compatible with APEX AMP O2.
Args:
optimizer (torch.optim.Optimizer): optimizer to wrap
device (torch.device): device for EMA parameters
decay (float): decay factor
Returns:
returns an instance of torch.optim.Optimizer that computes EMA of
parameters
Example:
model = Model().to(device)
opt = torch.optim.Adam(model.parameters())
opt = EMAOptimizer(opt, device, 0.9999)
for epoch in range(epochs):
training_loop(model, opt)
regular_eval_accuracy = evaluate(model)
with opt.swap_ema_weights():
ema_eval_accuracy = evaluate(model)
"""
stream: Any | None
@override
def __init__(
self,
optimizer: torch.optim.Optimizer,
device: torch.device,
decay: float = 0.9999,
every_n_steps: int = 1,
current_step: int = 0,
):
self.optimizer = optimizer
self.decay = decay
self.device = device
self.current_step = current_step
self.every_n_steps = every_n_steps
self.save_original_optimizer_state = False
self.first_iteration = True
self.rebuild_ema_params = True
self.stream = None
self.thread = None
self.ema_params = ()
self.in_saving_ema_model_context = False
def all_parameters(self) -> Iterable[torch.Tensor]:
return (param for group in self.param_groups for param in group["params"])
@overload
def step(self, closure: None = ...) -> None: ...
@overload
def step(self, closure: Callable[[], float]) -> float: ...
@override
def step(self, closure: Callable[[], float] | None = None) -> float | None:
self.join()
if self.first_iteration:
if any(p.is_cuda for p in self.all_parameters()):
self.stream = torch.cuda.Stream()
self.first_iteration = False
if self.rebuild_ema_params:
opt_params = list(self.all_parameters())
self.ema_params += tuple(
copy.deepcopy(param.data.detach()).to(self.device)
for param in opt_params[len(self.ema_params) :]
)
self.rebuild_ema_params = False
loss = self.optimizer.step(closure)
if self._should_update_at_step():
self.update()
self.current_step += 1
return loss
def _should_update_at_step(self) -> bool:
return self.current_step % self.every_n_steps == 0
@torch.no_grad()
def update(self):
if self.stream is not None:
self.stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream):
current_model_state = tuple(
param.data.to(self.device, non_blocking=True)
for param in self.all_parameters()
)
if self.device.type == "cuda":
ema_update(self.ema_params, current_model_state, self.decay)
if self.device.type == "cpu":
self.thread = threading.Thread(
target=run_ema_update_cpu,
args=(
self.ema_params,
current_model_state,
self.decay,
self.stream,
),
)
self.thread.start()
def swap_tensors(self, tensor1, tensor2):
tmp = torch.empty_like(tensor1)
tmp.copy_(tensor1)
tensor1.copy_(tensor2)
tensor2.copy_(tmp)
def switch_main_parameter_weights(self, saving_ema_model: bool = False):
self.join()
self.in_saving_ema_model_context = saving_ema_model
for param, ema_param in zip(self.all_parameters(), self.ema_params):
self.swap_tensors(param.data, ema_param)
@contextlib.contextmanager
def swap_ema_weights(self, enabled: bool = True):
r"""
A context manager to in-place swap regular parameters with EMA
parameters.
It swaps back to the original regular parameters on context manager
exit.
Args:
enabled (bool): whether the swap should be performed
"""
if enabled:
self.switch_main_parameter_weights()
try:
yield
finally:
if enabled:
self.switch_main_parameter_weights()
def __getattr__(self, name):
return getattr(self.optimizer, name)
def join(self):
if self.stream is not None:
self.stream.synchronize()
if self.thread is not None:
self.thread.join()
@override
def state_dict(self):
self.join()
if self.save_original_optimizer_state:
return self.optimizer.state_dict()
# if we are in the context of saving an EMA model, the EMA weights are in the modules' actual weights
ema_params = (
self.ema_params
if not self.in_saving_ema_model_context
else list(self.all_parameters())
)
state_dict = {
"opt": self.optimizer.state_dict(),
"ema": ema_params,
"current_step": self.current_step,
"decay": self.decay,
"every_n_steps": self.every_n_steps,
}
return state_dict
@override
def load_state_dict(self, state_dict):
self.join()
self.optimizer.load_state_dict(state_dict["opt"])
self.ema_params = tuple(
param.to(self.device) for param in copy.deepcopy(state_dict["ema"])
)
self.current_step = state_dict["current_step"]
self.decay = state_dict["decay"]
self.every_n_steps = state_dict["every_n_steps"]
self.rebuild_ema_params = False
@override
def add_param_group(self, param_group):
self.optimizer.add_param_group(param_group)
self.rebuild_ema_params = True