Source code for mattertune.callbacks.ema

from __future__ import annotations

import contextlib
import copy
import threading
from typing import Iterable

import lightning.pytorch as pl
import nshconfig as C
import torch
from lightning.pytorch import Callback
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from typing_extensions import override


[docs] class EMA(Callback): """ Implements Exponential Moving Averaging (EMA). When training a model, this callback will maintain moving averages of the trained parameters. When evaluating, we use the moving averages copy of the trained parameters. When saving, we save an additional set of parameters with the prefix `ema`. Args: decay: The exponential decay used when calculating the moving average. Has to be between 0-1. validate_original_weights: Validate the original weights, as apposed to the EMA weights. every_n_steps: Apply EMA every N steps. cpu_offload: Offload weights to CPU. """
[docs] @override def __init__( self, decay: float, validate_original_weights: bool = False, every_n_steps: int = 1, cpu_offload: bool = False, ): if not (0 <= decay <= 1): raise MisconfigurationException("EMA decay value must be between 0 and 1") self.decay = decay self.validate_original_weights = validate_original_weights self.every_n_steps = every_n_steps self.cpu_offload = cpu_offload
[docs] @override def on_fit_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule" ) -> None: device = pl_module.device if not self.cpu_offload else torch.device("cpu") trainer.optimizers = [ EMAOptimizer( optim, device=device, decay=self.decay, every_n_steps=self.every_n_steps, current_step=trainer.global_step, ) for optim in trainer.optimizers if not isinstance(optim, EMAOptimizer) ]
[docs] @override def on_validation_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule" ) -> None: if self._should_validate_ema_weights(trainer): self.swap_model_weights(trainer)
[docs] @override def on_validation_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule" ) -> None: if self._should_validate_ema_weights(trainer): self.swap_model_weights(trainer)
[docs] @override def on_test_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule" ) -> None: if self._should_validate_ema_weights(trainer): self.swap_model_weights(trainer)
[docs] @override def on_test_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule" ) -> None: if self._should_validate_ema_weights(trainer): self.swap_model_weights(trainer)
def _should_validate_ema_weights(self, trainer: "pl.Trainer") -> bool: return not self.validate_original_weights and self._ema_initialized(trainer) def _ema_initialized(self, trainer: "pl.Trainer") -> bool: return any( isinstance(optimizer, EMAOptimizer) for optimizer in trainer.optimizers )
[docs] def swap_model_weights(self, trainer: "pl.Trainer", saving_ema_model: bool = False): for optimizer in trainer.optimizers: assert isinstance(optimizer, EMAOptimizer) optimizer.switch_main_parameter_weights(saving_ema_model)
[docs] @contextlib.contextmanager def save_ema_model(self, trainer: "pl.Trainer"): """ Saves an EMA copy of the model + EMA optimizer states for resume. """ self.swap_model_weights(trainer, saving_ema_model=True) try: yield finally: self.swap_model_weights(trainer, saving_ema_model=False)
[docs] @contextlib.contextmanager def save_original_optimizer_state(self, trainer: "pl.Trainer"): for optimizer in trainer.optimizers: assert isinstance(optimizer, EMAOptimizer) optimizer.save_original_optimizer_state = True try: yield finally: for optimizer in trainer.optimizers: optimizer.save_original_optimizer_state = False
[docs] @torch.no_grad() def ema_update(ema_model_tuple, current_model_tuple, decay): torch._foreach_mul_(ema_model_tuple, decay) torch._foreach_add_( ema_model_tuple, current_model_tuple, alpha=(1.0 - decay), )
[docs] def run_ema_update_cpu( ema_model_tuple, current_model_tuple, decay, pre_sync_stream=None ): if pre_sync_stream is not None: pre_sync_stream.synchronize() ema_update(ema_model_tuple, current_model_tuple, decay)
[docs] class EMAOptimizer(torch.optim.Optimizer): r""" EMAOptimizer is a wrapper for torch.optim.Optimizer that computes Exponential Moving Average of parameters registered in the optimizer. EMA parameters are automatically updated after every step of the optimizer with the following formula: ema_weight = decay * ema_weight + (1 - decay) * training_weight To access EMA parameters, use ``swap_ema_weights()`` context manager to perform a temporary in-place swap of regular parameters with EMA parameters. Notes: - EMAOptimizer is not compatible with APEX AMP O2. Args: optimizer (torch.optim.Optimizer): optimizer to wrap device (torch.device): device for EMA parameters decay (float): decay factor Returns: returns an instance of torch.optim.Optimizer that computes EMA of parameters Example: model = Model().to(device) opt = torch.optim.Adam(model.parameters()) opt = EMAOptimizer(opt, device, 0.9999) for epoch in range(epochs): training_loop(model, opt) regular_eval_accuracy = evaluate(model) with opt.swap_ema_weights(): ema_eval_accuracy = evaluate(model) """
[docs] @override def __init__( self, optimizer: torch.optim.Optimizer, device: torch.device, decay: float = 0.9999, every_n_steps: int = 1, current_step: int = 0, ): self.optimizer = optimizer self.decay = decay self.device = device self.current_step = current_step self.every_n_steps = every_n_steps self.save_original_optimizer_state = False self.first_iteration = True self.rebuild_ema_params = True self.stream = None self.thread = None self.ema_params = () self.in_saving_ema_model_context = False
[docs] def all_parameters(self) -> Iterable[torch.Tensor]: return (param for group in self.param_groups for param in group["params"])
[docs] @override def step(self, closure=None, **kwargs): self.join() if self.first_iteration: if any(p.is_cuda for p in self.all_parameters()): self.stream = torch.cuda.Stream() self.first_iteration = False if self.rebuild_ema_params: opt_params = list(self.all_parameters()) self.ema_params += tuple( copy.deepcopy(param.data.detach()).to(self.device) for param in opt_params[len(self.ema_params) :] ) self.rebuild_ema_params = False loss = self.optimizer.step(closure) if self._should_update_at_step(): self.update() self.current_step += 1 return loss
def _should_update_at_step(self) -> bool: return self.current_step % self.every_n_steps == 0
[docs] @torch.no_grad() def update(self): if self.stream is not None: self.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream): current_model_state = tuple( param.data.to(self.device, non_blocking=True) for param in self.all_parameters() ) if self.device.type == "cuda": ema_update(self.ema_params, current_model_state, self.decay) if self.device.type == "cpu": self.thread = threading.Thread( target=run_ema_update_cpu, args=( self.ema_params, current_model_state, self.decay, self.stream, ), ) self.thread.start()
[docs] def swap_tensors(self, tensor1, tensor2): tmp = torch.empty_like(tensor1) tmp.copy_(tensor1) tensor1.copy_(tensor2) tensor2.copy_(tmp)
[docs] def switch_main_parameter_weights(self, saving_ema_model: bool = False): self.join() self.in_saving_ema_model_context = saving_ema_model for param, ema_param in zip(self.all_parameters(), self.ema_params): self.swap_tensors(param.data, ema_param)
[docs] @contextlib.contextmanager def swap_ema_weights(self, enabled: bool = True): r""" A context manager to in-place swap regular parameters with EMA parameters. It swaps back to the original regular parameters on context manager exit. Args: enabled (bool): whether the swap should be performed """ if enabled: self.switch_main_parameter_weights() try: yield finally: if enabled: self.switch_main_parameter_weights()
def __getattr__(self, name): return getattr(self.optimizer, name)
[docs] def join(self): if self.stream is not None: self.stream.synchronize() if self.thread is not None: self.thread.join()
[docs] @override def state_dict(self): self.join() if self.save_original_optimizer_state: return self.optimizer.state_dict() # if we are in the context of saving an EMA model, the EMA weights are in the modules' actual weights ema_params = ( self.ema_params if not self.in_saving_ema_model_context else list(self.all_parameters()) ) state_dict = { "opt": self.optimizer.state_dict(), "ema": ema_params, "current_step": self.current_step, "decay": self.decay, "every_n_steps": self.every_n_steps, } return state_dict
[docs] @override def load_state_dict(self, state_dict): self.join() self.optimizer.load_state_dict(state_dict["opt"]) self.ema_params = tuple( param.to(self.device) for param in copy.deepcopy(state_dict["ema"]) ) self.current_step = state_dict["current_step"] self.decay = state_dict["decay"] self.every_n_steps = state_dict["every_n_steps"] self.rebuild_ema_params = False
[docs] @override def add_param_group(self, param_group): self.optimizer.add_param_group(param_group) self.rebuild_ema_params = True
[docs] class EMAConfig(C.Config): decay: float validate_original_weights: bool = False every_n_steps: int = 1 cpu_offload: bool = False
[docs] def construct_callback(self): return EMA( decay=self.decay, validate_original_weights=self.validate_original_weights, every_n_steps=self.every_n_steps, cpu_offload=self.cpu_offload, )