mattertune.configs.normalization
- class mattertune.configs.normalization.MeanStdNormalizerConfig(*, only_for_target=True, mean, std)[source]
- Parameters:
only_for_target (bool)
mean (float)
std (float)
- only_for_target: bool
Whether the normalizer should only be applied to the target property or to both predictions and targets.
- mean: float
The mean of the property values.
- std: float
The standard deviation of the property values.
- class mattertune.configs.normalization.NormalizerConfigBase(*, only_for_target)[source]
- Parameters:
only_for_target (bool)
- only_for_target: bool
Whether the normalizer should only be applied to the target property or to both predictions and targets.
- class mattertune.configs.normalization.PerAtomNormalizerConfig(*, only_for_target=False)[source]
- Parameters:
only_for_target (bool)
- only_for_target: bool
Whether the normalizer should only be applied to the target property or to both predictions and targets.
- class mattertune.configs.normalization.PerAtomReferencingNormalizerConfig(*, only_for_target=True, per_atom_references)[source]
- Parameters:
only_for_target (bool)
per_atom_references (Mapping[int, float] | Sequence[float] | Path)
- only_for_target: bool
Whether the normalizer should only be applied to the target property or to both predictions and targets.
- per_atom_references: Mapping[int, float] | Sequence[float] | Path
The reference values for each element.
If a dictionary is provided, it maps atomic numbers to reference values
If a list is provided, it’s a list of reference values indexed by atomic number
If a path is provided, it should point to a JSON file containing the references
- class mattertune.configs.normalization.RMSNormalizerConfig(*, only_for_target=True, rms)[source]
- Parameters:
only_for_target (bool)
rms (float)
- only_for_target: bool
Whether the normalizer should only be applied to the target property or to both predictions and targets.
- rms: float
The root mean square of the property values.