mattertune.configs.callbacks.model_checkpoint

class mattertune.configs.callbacks.model_checkpoint.ModelCheckpointConfig(*, dirpath=None, filename=None, monitor=None, verbose=False, save_last=None, save_top_k=1, save_weights_only=False, mode='min', auto_insert_metric_name=True, every_n_train_steps=None, train_time_interval=None, every_n_epochs=None, save_on_train_epoch_end=None, enable_version_counter=True)[source]
Parameters:
  • dirpath (str | None)

  • filename (str | None)

  • monitor (str | None)

  • verbose (bool)

  • save_last (Literal[True, False, 'link'] | None)

  • save_top_k (int)

  • save_weights_only (bool)

  • mode (Literal['min', 'max'])

  • auto_insert_metric_name (bool)

  • every_n_train_steps (int | None)

  • train_time_interval (timedelta | None)

  • every_n_epochs (int | None)

  • save_on_train_epoch_end (bool | None)

  • enable_version_counter (bool)

dirpath: str | None

None.

Type:

Directory to save the model file. Default

filename: str | None

None.

Type:

Checkpoint filename. Can contain named formatting options. Default

monitor: str | None

None.

Type:

Quantity to monitor. Default

verbose: bool

False.

Type:

Verbosity mode. Default

save_last: Literal[True, False, 'link'] | None

None.

Type:

When True or “link”, saves a ‘last.ckpt’ checkpoint when a checkpoint is saved. Default

save_top_k: int

1.

Type:

If save_top_k=k, save k models with best monitored quantity. Default

save_weights_only: bool

False.

Type:

If True, only save model weights. Default

mode: Literal['min', 'max']

'min'.

Type:

One of {‘min’, ‘max’}. For ‘min’ training stops when monitored quantity stops decreasing. Default

auto_insert_metric_name: bool

True.

Type:

Whether to automatically insert metric name in checkpoint filename. Default

every_n_train_steps: int | None

None.

Type:

Number of training steps between checkpoints. Default

train_time_interval: timedelta | None

None.

Type:

Checkpoints are monitored at the specified time interval. Default

every_n_epochs: int | None

None.

Type:

Number of epochs between checkpoints. Default

save_on_train_epoch_end: bool | None

None.

Type:

Whether to run checkpointing at end of training epoch. Default

enable_version_counter: bool

True.

Type:

Whether to append version to existing filenames. Default

create_callback()[source]

Creates a ModelCheckpoint callback instance from this config.