mattertune.configs.recipes.lora
- class mattertune.configs.recipes.lora.LoRARecipeConfig(*, name='lora', lora)[source]
Recipe for applying Low-Rank Adaptation (LoRA) to a model. LoRA is a method for fine-tuning pre-trained models via the injection of low-rank “adapter” weights into the model’s linear layers. This allows for efficient fine-tuning of large models on small datasets, while preserving the pre-trained weights in the backbone.
Reference: https://arxiv.org/abs/2106.09685
- Parameters:
name (Literal['lora'])
lora (LoraConfig)
- name: Literal['lora']
Discriminator for the LoRA recipe.
- lora: LoraConfig
LoRA configuration.
- class mattertune.configs.recipes.lora.LoraConfig(*, peft_type=None, task_type=None, inference_mode=False, r=8, target_modules=None, lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={})[source]
- Parameters:
peft_type (str | None)
task_type (str | None)
inference_mode (bool)
r (int)
target_modules (list[str] | str | None)
lora_alpha (int)
lora_dropout (float)
fan_in_fan_out (bool)
bias (Literal['none', 'all', 'lora_only'])
use_rslora (bool)
modules_to_save (list[str] | None)
init_lora_weights (bool | Literal['gaussian'])
layers_to_transform (list[int] | int | None)
layers_pattern (list[str] | str | None)
rank_pattern (dict[str, Any])
alpha_pattern (dict[str, Any])
- r: int
LoRA attention dimension (rank).
- target_modules: list[str] | str | None
Names of modules to apply LoRA to. Can be a list of module names, a regex pattern, or ‘all-linear’.
- lora_alpha: int
Alpha parameter for LoRA scaling.
- lora_dropout: float
Dropout probability for LoRA layers.
- fan_in_fan_out: bool
Set True if target layer stores weights as (fan_in, fan_out).
- bias: Literal['none', 'all', 'lora_only']
Bias type for LoRA. Controls which biases are updated during training.
- use_rslora: bool
Whether to use Rank-Stabilized LoRA which sets adapter scaling to lora_alpha/sqrt(r).
- modules_to_save: list[str] | None
Additional modules to be trained and saved besides LoRA layers.
- init_lora_weights: bool | Literal['gaussian']
Initialization method for LoRA weights.
- layers_to_transform: list[int] | int | None
Specific layer indices to apply LoRA transformation to.
- layers_pattern: list[str] | str | None
Layer pattern name used with layers_to_transform.
- peft_type: str | None
Type of PEFT method being used.
- task_type: str | None
Type of task being performed.
- inference_mode: bool
Whether to use inference mode.
- rank_pattern: dict[str, Any]
Mapping of layer names/patterns to custom ranks different from default r.
- alpha_pattern: dict[str, Any]
Mapping of layer names/patterns to custom alphas different from default lora_alpha.
- class mattertune.configs.recipes.lora.PeftConfig(*, peft_type=None, task_type=None, inference_mode=False)[source]
- Parameters:
peft_type (str | None)
task_type (str | None)
inference_mode (bool)
- peft_type: str | None
Type of PEFT method being used.
- task_type: str | None
Type of task being performed.
- inference_mode: bool
Whether to use inference mode.